Radiation flow / Supernova light curves

Radiation flow is a fundamental component of astrophysics

Eagle nebula

Stationary medium

SN1987A light curve

Expanding medium

Radiation flow experiments in static media, using buried tracer layers have been done on the Nova and Vulcan lasers

Radiation flow experiments in stationary media are being developed on the Omega laser

- Both diffusive and nondiffusive regimes are accessed
- · See T. Back et al., HI1.03, this conference

Supernova light curve calculations are sensitive to radiation flow through expanding media

- Homologous expansion:
 - velocity gradients
 - broadening of lines
 - closes up the rad. windows
 - holds the heat in
- SNe used as standard candles
- H_o depends on SN lgt crvs

Experiments measuring radiation line transport through 1D cylindrically expanding plasmas have been made on the Trident and Vulcan laser facilities

Al cylinders were exploded, giving an expansion plasma that greatly modifies the line transport

Patel et al., JSQRT <u>57</u>, 683 (1997)

